首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12075篇
  免费   801篇
  国内免费   1858篇
  2023年   194篇
  2022年   238篇
  2021年   376篇
  2020年   323篇
  2019年   423篇
  2018年   353篇
  2017年   307篇
  2016年   332篇
  2015年   376篇
  2014年   641篇
  2013年   699篇
  2012年   495篇
  2011年   691篇
  2010年   595篇
  2009年   681篇
  2008年   730篇
  2007年   700篇
  2006年   664篇
  2005年   597篇
  2004年   567篇
  2003年   549篇
  2002年   399篇
  2001年   342篇
  2000年   312篇
  1999年   274篇
  1998年   281篇
  1997年   229篇
  1996年   205篇
  1995年   218篇
  1994年   224篇
  1993年   199篇
  1992年   198篇
  1991年   139篇
  1990年   139篇
  1989年   124篇
  1988年   89篇
  1987年   100篇
  1986年   80篇
  1985年   94篇
  1984年   72篇
  1983年   65篇
  1982年   88篇
  1981年   48篇
  1980年   54篇
  1979年   60篇
  1978年   59篇
  1977年   22篇
  1976年   26篇
  1975年   16篇
  1974年   21篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
1.
Splicing patterns in human immunodeficiency virus type 1 (HIV-1) are maintained through cis regulatory elements that recruit antagonistic host RNA-binding proteins. The activity of the 3′ acceptor site A7 is tightly regulated through a complex network of an intronic splicing silencer (ISS), a bipartite exonic splicing silencer (ESS3a/b), and an exonic splicing enhancer (ESE3). Because HIV-1 splicing depends on protein-RNA interactions, it is important to know the tertiary structures surrounding the splice sites. Herein, we present the NMR solution structure of the phylogenetically conserved ISS stem loop. ISS adopts a stable structure consisting of conserved UG wobble pairs, a folded 2X2 (GU/UA) internal loop, a UU bulge, and a flexible AGUGA apical loop. Calorimetric and biochemical titrations indicate that the UP1 domain of heterogeneous nuclear ribonucleoprotein A1 binds the ISS apical loop site-specifically and with nanomolar affinity. Collectively, this work provides additional insights into how HIV-1 uses a conserved RNA structure to commandeer a host RNA-binding protein.  相似文献   
2.
The 231-residue capsid (CA) protein of human immunodeficiency virus type 1 (HIV-1) spontaneously self-assembles into tubes with a hexagonal lattice that is believed to mimic the surface lattice of conical capsid cores within intact virions. We report the results of solid-state nuclear magnetic resonance (NMR) measurements on HIV-1 CA tubes that provide new information regarding changes in molecular structure that accompany CA self-assembly, local dynamics within CA tubes, and possible mechanisms for the generation of lattice curvature. This information is contained in site-specific assignments of signals in two- and three-dimensional solid-state NMR spectra, conformation-dependent 15N and 13C NMR chemical shifts, detection of highly dynamic residues under solution NMR conditions, measurements of local variations in transverse spin relaxation rates of amide 1H nuclei, and quantitative measurements of site-specific 15N–15N dipole–dipole couplings. Our data show that most of the CA sequence is conformationally ordered and relatively rigid in tubular assemblies and that structures of the N-terminal domain (NTD) and the C-terminal domain (CTD) observed in solution are largely retained. However, specific segments, including the N-terminal β-hairpin, the cyclophilin A binding loop, the inter-domain linker, segments involved in intermolecular NTD–CTD interactions, and the C-terminal tail, have substantial static or dynamical disorder in tubular assemblies. Other segments, including the 310-helical segment in CTD, undergo clear conformational changes. Structural variations associated with curvature of the CA lattice appear to be localized in the inter-domain linker and intermolecular NTD–CTD interface, while structural variations within NTD hexamers, around local 3-fold symmetry axes, and in CTD–CTD dimerization interfaces are less significant.  相似文献   
3.
4.
本文阐述了中药防治病毒病的历史及其应用概况,中药联合微生态制剂防治呼吸、消化系统病毒病的理论依据、临床应用和发展前景。  相似文献   
5.
6.
The outbreak of influenza A comes from a relatively stable state is a critical phenomenon on epidemic. In this paper, influenza A varying from different states is studied in the method of dynamical network biomarkers (DNB). Through studying DNB of influenza A virus protein, we can detect the warning signals of outbreak for influenza A and obtain a composite index. The composite index varies along with the state of pandemic influenza, which gives a clue showing the turn point of outbreak. The low value (<1) steady state of the composite index means influenza A is normally in the relatively steady stage. Meanwhile, if the composite index of a certain year increases by more than 0.8 relative to the previous year and it is less than 1 and it increases sharply and reaches a peak being larger than 1 in next year, it means the year is normal in the critical state before outbreak and the next year is normally in the outbreak state. Therefore, we can predict the outbreak of influenza A and identify the critical state before influenza A outbreak or outbreak state by observing the variation of index value.  相似文献   
7.
Hepatitis C virus (HCV) core protein is known to induce promoter hypermethylation of tumor suppressor genes including E-cadherin to repress their expression when overexpressed in human hepatocytes; however, its actual role during HCV infection is still unknown. Here, we report that infection with HCV derived from pJFH-1 replicon system that mimics natural infection elevates protein levels of DNA methyltransferase 1 and 3b to enhance DNMT activity in human hepatocytes. As a consequence, HCV induced promoter hypermethylation of E-cadherin, resulting in repression of its expression. In addition down-regulation of E-cadherin by HCV led to epithelial–mesenchymal transition that is known to be a critical event during the late stage of tumorigenesis.  相似文献   
8.
In non-polarized cell culture models, influenza virus has been shown to enter host cells via multiple endocytic pathways, including classical clathrin-mediated endocytic routes (CME), clathrin- and caveolae-independent routes and macropinocytosis. However, little is known about the entry route of influenza virus in differentiated epithelia, in vivo site of infection for influenza virus. Here, we show that in polarized Madin–Darby canine kidney type II (MDCK II) cells, influenza virus has a specific utilization of the clathrin-mediated endocytic pathway and requires Eps15 for host cell entry.  相似文献   
9.
Abstract The 3D gene of foot-and-mouth disease virus encodes the viral RNA dependent RNA polymerase, also called virus infection associated (VIA) antigen, which is the most important serological marker of virus infection. This 3D gene from a serotype Cl virus has been cloned and overexpressed in Escherichia coli under the control of the strong lambda lytic promoters. The resulting 51 kDa recombinant protein has been shown to be immunoreactive with sera from infected animals. After induction of gene expression, an immediate and dramatic arrest of cell DNA synthesis occurs, similar to that produced by genotoxic doses of the drug mitomycin C. This effect does not occur during the production of either a truncated VIA antigen or other related and non-related viral proteins. The inhibition of DNA replication results in a subsequent induction of the host SOS DNA-repair response and in an increase of the mutation frequency in the surviving cells.  相似文献   
10.
Stable σ-adducts of azolo[5,1-c]triazines and azolo[1,5-a]pyrimidines with different polyphenols were synthesized and their antioxidant and antiviral activity were investigated. Their affinity to viral hemagglutinin was assessed using molecular modelling. The phloroglucinol-modified azolo-azines possessed the highest virus-inhibiting activity. According to the results of the study of antioxidant properties of compounds, the most promising ones exhibiting highest antioxidant capacity were adducts containing in their structure pyrogallol and catechol residues and 6-nitro-triazolotriazin-7-ol scaffold. No correlation between antioxidant and virus-inhibiting activity of compounds studied was detected. The most active compounds demonstrated the ability to prevent binding of viral hemagglutinin with cellular receptor as shown in hemagglutination inhibition assay. Our results demonstrate that polyphenol-modified azolo-azines are prospective for further optimization as potential antivirals and that their action is directed against viral hemagglutinin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号